
Pure Scheme internationalization
January 2025

This is the manual for po-lib version 0.1, a R7RS library for internationalization, last
updated 25 January 2025.

Copyright c© 2025 Vivien Kraus.

i

Table of Contents

1 Mark strings for internationalization 1

2 Extract marked strings in your code 3

3 Save the translation template 4

4 Maintain translations with GNU Gettext 5

5 Load translations . 6

6 How to use po-lib on Hoot . 7

7 Testing the library . 8

Index . 9

1

1 Mark strings for internationalization

Let us look at an example:

(define (main)

"Say the line."

(display "Hello, world!")

(newline))

In this example, you may want to translate the greeting message in the user’s language.
Import the (po-lib) module, and mark the line:

(import (po-lib))

(define (main)

"Say the line."

(display (gettext "Hello, world!"))

(newline))

Please note that if you are running your code on the Hoot platform, you will need to
provide additional webassembly imports. See Chapter 6 [Hoot], page 7.

[Function]gettext msgid options ...
Translate msgid into the current locale. The behavior can be modified with the
options syntax, according to the following example:

(gettext "This is the message to print."

(domain "my library")

(context "disambiguation string")

(plural "These are the ~a messages to print." n-messages)

(comments "Dear translators, I address this message to you \

regarding the example translation.")

(source "example-file.scm" 42)

(range minimum-possible-n-messages maximum-possible-n-messages)

(extra-flags "scheme-format"))

domain If you are defining a library, you most likely don’t want your transla-
tions to clash with those of a dependent library. In order to prevent that
from happening, you should make sure to use a domain for your inter-
nationalized code. See Section “Solving Ambiguities” in GNU ’gettext’
utilities.

context English can use the same word to mean two different things, where other
languages will want to use different strings. The context is not visible
to the user, but it will help choose the correct translation. See Section
“Using contexts for solving ambiguities” in GNU ‘gettext’ utilities.

plural If the message can be singular or plural depending on a run-time value
(here, n-messages), then the correct translation should be picked accord-
ing to the plural forms for the current language. The first argument is
the alternative plural form in English, and the second argument is the
argument of the thing marked plural. See Section “Additional functions
for plural forms” in GNU ’gettext’ utilities.

Chapter 1: Mark strings for internationalization 2

comments It might be a good idea to indicate to the translator some information
about how the message will be used. See Section “The Format of PO
Files” in GNU ’gettext’ utilities.

source You may want to indicate the source location as a filename and line
number, but you maybe should only do that as a macro expansion side-
effect.

range

extra-flags

By default, the plural case can handle any number for the plural argu-
ment. However, in certain cases, it is known that the plural argument
may be constrained into a range, which can help the translators. Other
flags may also be passed. See Section “The Format of PO Files” in GNU
’gettext’ utilities.

Sometimes you do not want to actually perform the translation, but still mark the string
so that it can be translated.

[Function]mark-string msgid options ...
Return msgid. The options are the same as those for gettext, but the run-time plural
argument is discarded at the syntax level.

3

2 Extract marked strings in your code

With the previous example, you may extract the translations:

(import (po-lib))

(define (main)

"Say the line."

(display (gettext "Hello, world!"))

(newline))

(dynamic-xgettext

#f

"myproject"

"0.0"

"msgid-bugs@myproject"

main)

What this will do is return a list of template translations, starting with a header with
all the information, and then all translations that were used when calling main with no
argument.

[Function]dynamic-xgettext domain project-name project-version
bug-report-address f

Return multiple values: a list of template translations with a header first, and all
values returned by f called with no arguments.

The extraction is dynamic, because strings within dead code will not be detected. It
may be difficult to exercise all the translations in a complex program however.

[Macro]with-marked-strings domain code ...
Prematurely register all the occurences of calls to gettext or mark-string and then
expand code in the same lexical scope. Even the messages in deep rarely used code
branches will thus be marked for translations, provided the lexical scope of the ex-
pansion of with-marked-strings is reached during the dynamic-xgettext invocation.

For instance,

(dynamic-xgettext #f "example" "0.0.0" "test@example.org"

(lambda ()

(when #f

(display (gettext "Oh no, a rare condition occured!")))))

will return a translation with only the header template, because the useful branch is
never reached, while

(dynamic-xgettext #f "example" "0.0.0" "test@example.org"

(lambda ()

(with-marked-strings #f

(when #f

(display (gettext "Oh no, a rare condition occured!"))))))

will return 2 translations templates: the header template, and the message “Oh no,
a rare condition occured!”.

4

3 Save the translation template

Extracting the strings will give you a list of translation templates, which are translations
with an empty translated message.

[Function]translations->po translations port?
Write a list of translations to port in the PO syntax.

5

4 Maintain translations with GNU Gettext

Once you have a PO template file, you can start translating. See Section “The Translator’s
View” in GNU ’gettext’ utilities, for how to do that with GNU Gettext. You need not
compile your PO file to MO.

6

5 Load translations

Once you are done translating, you should have a PO file. Open it as an input port, and
read all translations, as a list.

[Function]read-translation port?
Read a new translation entry from port, or the current input port. If port is at the
end, return the end-of-file object.

In order to be usable, the translations must be registered to the run-time translator.

[Variable]current-po-file-index
This parameter controls which PO files are used. Provided that you get multiple
PO files, one for each language, you will have a list of list of translations. You can
parameterize this with such a value. The PO files will be indexed in a binary search
tree for efficient retrieval.

[Variable]current-languages
This parameter holds a list of languages to try in order. They can have a regional
component, separated from the language by an underscore character. It is initialized
with the value of the LANG environment variable.

[Function]detect-current-languages
When loading the po-lib library, the current-languages variable is initialized by the
environment. In most cases, it is the content of the LANG environment variable, and
on Hoot, it is based on the navigator.languages variable.

Return the list of language specified by the environment.

7

6 How to use po-lib on Hoot

Hoot is a compiler from Scheme to WebAssembly. In order to process the
navigator.languages variable, the WebAssembly module where po-lib is included will
require the following imports:

document.navigatorLanguagesRef

This function takes no argument and returns an array of strings. Presumably
you will want to return navigator.languages.

document.arrayLength

Given an array as its sole argument, this function should return its length as a
32-bit integer.

document.stringArrayRef

Given an array languages and a 32-bit integer index i, this function should
return the string languages[i].

8

7 Testing the library

The library comes with unit tests.

[Function]run-unit-tests runner?
Run the stand-alone po-lib test suite with a SRFI-64 runner, or if missing, a new
simple test runner.

[Function]unit-tests
Run the unit tests as part of a wider test suite.

9

Index

C
current-languages . 6
current-po-file-index . 6

D
detect-current-languages . 6
dynamic-xgettext . 3

G
gettext . 1

M
mark-string . 2

R
read-translation . 6
run-unit-tests . 8

T
translations->po . 4

U
unit-tests . 8

W
with-marked-strings . 3

	Table of Contents
	1 Mark strings for internationalization
	2 Extract marked strings in your code
	3 Save the translation template
	4 Maintain translations with GNU Gettext
	5 Load translations
	6 How to use po-lib on Hoot
	7 Testing the library
	Index
	C
	D
	G
	M
	R
	T
	U
	W

